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Abstract

Several algorithms for introducing artificial dissipation into a central difference approx-

imation to the Euler and Navier Stokes equations are considered. The focus of the paper is

on the convective upwind and split pressure (CUSP) scheme, which is designed to support

single interior point discrete shock waves. This scheme is analyzed and compared in detail

with scalar and matrix dissipation (MATD) schemes. Resolution capability is determined

by solving subsonic, transonic, and hypersonic flow problems. A finite-volume discretiza-

tion and a multistage time-stepping scheme with multigrid are used to compute solutions

to the flow equations. Numerical results are also compared with either theoretical solutions

or experimental data. For transonic airfoil flows the best accuracy on coarse meshes for

aerodynamic coefficients is obtained with a simple MATD scheme.
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Introduction

Accuracy must be a primary consideration in the construction of any numerical scheme. One

would like to devise a scheme with the minimum amount of artificial dissipation required

for stability, as well as convergence in the case of a stationary solution. For fluid dynamic

computations the numerical scheme should be designed to have high accuracy in smooth regions

of the flow field and well resolved shock waves and contact discontinuities. According to

Harten [3] such discrete formulations, where the accuracy away from discontinuities is at least

second order, are called high resolution schemes. The design of these schemes for systems of

conservation laws is generally based on theory developed for a scalar conservation law. As a

consequence one cannot ensure that the properties of the scheme for the scalar equation are

valid for the system. In addition, schemes that permit high definition of shock waves without

oscillations are first order in the neighborhood of shocks. Concern naturally arises regarding

contamination of the solution, especially in the case of viscous flows. For these reasons the

properties and resolution capability of this class of schemes must be verified through numerical

applications for a wide range of flow conditions.

High resolution schemes of particular interest for solving the compressible fluid equations

are those that allow shock capturing with a single interior point. In Ref. [6] Jameson presents

the convective upwind and split pressure (CUSP) scheme. For this scheme the artificial diffusive

flux vector associated with a given coordinate direction is expressed in terms of changes in the

state and flux vectors. A somewhat limited number of inviscid and viscous computations have

been performed to evaluate these schemes (see Refs. [6, 7] and [22, 23, 9]).

In the current work we investigate and analyze the HCUSP version [6] of the CUSP scheme.

The HCUSP scheme allows a solution with constant total enthalpy for steady flow. We discuss

the shock-capturing behavior for various choices of the dissipation coefficients. We introduce

a simple modification of the limiter function, which is generally used with the scheme, to

control background dissipation, and thus global accuracy. The HCUSP scheme includes a

contribution that is scaled according to the local velocity. If the velocity approaches zero,

as it does for viscous flow near a solid boundary, and there is a high aspect ratio mesh,

the dissipation in the streamwise direction (i.e., direction of long side of mesh cell) may not

bc adequate for convergence. A change in the velocity scaling factor based on aspect ratio is

presented. The resolution capability of the HCUSP scheme is evaluated for subsonic, transonic,

and hypersonic flow problems. A detailed comparison of the scheme with a scalar and matrix

dissipation schemes is performed. The scalar scheme is based on the dissipation model of

Jameson, Schmidt, and Turkel [4] and is often used with central differencing.

Dissipation

A finite-volume approach is applied to discretize the fluid dynamic equations of motion. The

computational domain is divided into quadrilateral cells, fixed in time, and for each cell the

governing equations can be nondimensionalized and written in integral form as follows:

0 /[ + fO (fdy-gdx)-- fO (fvdy-gvdx), (1)
v_M

O--tj j_ wdxdy Re

where _ is a generic cell with boundary t0_). In the scaling factor for the viscous terms on the

right hand side of Eq. (1), the quantities % M, and Re are the ratio of specific heats, Mach

number, and Reynolds number, respectively, with M and Re defined in terms of nominal con-

ditions. Taking wj,k as the cell-averaged solution vector, Eq. (1) can be written in semidiscrete



form as
d

d ( j,kwj,k) + £wj,k = O,

where _r'_j, k is the area of the cell, and Z: is defined by

f_ = _C -_-_D '_ f-,AD,

with the subscriptsC, D, and AD referringto convection,diffusion,and artificialdissipation.

In orderto simplifythe descriptionofthe dissipationmodels,we considerthe one-dimensional

Euler equationsof gas dynamics.

Scalar Dissipation Model

The scalar dissipation is based on the model introduced by Jameson, Schmidt, and Turkel

[4]. This model defines a switching function based on a blending of the second and fourth

differences. The term associated with the operator £AD is expressed as

Then

£AD Wj = --(0 2 -- D4)wj = dj+l/2 - dj-1/2.

D2wj = V [()_j+l/2 6(2) _A]j+l/2J j wj, (2)

04Wj -D- _7 [(,_j+1/2 E_4)+I/2)A_A] wj, (3)

where the indcx j refers to a cell center, and the operators A and V are forward and backward

difference opcrators. Thc variable scaling factor Aj+I/2 is defined as

1
= +

where A_ is the largest eigenvalue in absolute value (i.e., spectral radius) of the flux Jaco-

bian matrix associated with the the Euler equations. In two dimensions, with (_, 7) denoting

arbitrary curvilinear coordinates, the scaling factor is usually defined as

(A{)j,k = Cj,k(r) (A_)j,k, Cj,k(r) = 1 + r_,k

with r = An/A _. The exponent

c(2) and 6 (4) use the pressure as a

6(2)
j+l/2

vj

6(4)
j+l/2

is generally taken to be between ½ and 2. The coefficients

sensor for sharp gradients, and they are defined as

= t_ (2) max(/_j_l,//j, Vj+l, vj+2) ,

-_ Pj-1 -- 2pj -4-Pj+I

Pj-1 A- 2pj A- Pj+I ' (4)

= max [0,(_(4) _ f12) _]_j+l/2JJ '

where typical values for the constants _(2) and t¢(4) axe in the ranges ¼ to ½ and _ to 132,

respectively. We shall refer to Eq. (4) as the JST switch. The switching function u can be

interpreted as a limiter, in the sense that it maximizes the second-difference contribution at

extrema and switches off the fourth-difference term. Moreover, at shock waves the dissipation

is first order, and a first-order upwind scheme is produced for a scalar equation. In smooth

regions of the flow field the dissipation is third order.



Thus,wehavetwodifferentdissipationmechanismsat work. Theswitchdetermineswhich
oneis activein anygivenregion.For smoothflows,v issmallandthedissipationtermsconsist
of a linearfourth differencethat dampsthe highfrequencieswhichthecentraldifferencescheme
doesnot damp.This is necessaryfor achievinga steadystate. In the neighborhoodof large
gradientsin the pressure,_ becomeslargeand switcheson the second-differenceviscosity
while simultaneouslyreducingthe fourth-differencedissipation.This is neededto introduce
anentropyconditionsothat thecorrectshockrelationsaresatisfiedand to reduceovershoots
neardiscontinuities.

Matrix Dissipation (MATD)

Sharp resolution of shock waves without oscillations can be achieved by closely imitating an

upwind scheme in the neighborhood of a shock wave. A key feature of upwind schemes is a

matrix evaluation of the numerical dissipation. With this evaluation the dissipative terms of

each discrete equation are scaled by the appropriate eigenvalues of the flux Jacobian matrix

rather than by the spectral radius, as in the JST scheme. A matrix dissipation model can

easily be constructed by starting with the JST formulation.

One can show [20] that the necessary modification of the JST scheme to produce a matrix

dissipation model is the substitution of IAI for the eigenvalue scaling factor A in Eqs. (2) and

(3). Since the Euler equations are a strongly hyperbolic system, the coefficient matrix can be

diagonalized. Assume QAQ -1 = h (diagonal matrix). Then IAI is defined as IAI = Q-11AIQ
and IAI = diag(IAll, I)_21,IA31), where Ai are the forward acoustic, backward acoustic, and

convective eigenvalues. Efficient ways of computing IAI times a vector axe presented in Ref. [20].

In practice one cannot choose A1,)`2, A3 as the eigenvalues. Near stagnation points ),3

approaches zero while near sonic lines )`1 or A2 approaches zero. A zero artificial viscosity

would create numerical difficulties. Hence, we limit these values as

IAjl = max(I)`jI,Vnp(A)) , j = 1,2

1_3[ = max(l)`3 I, V_p(A)),

where p(A) is the spectral radius of A, and the linear eigenvalue )`3 can be limited differently

than the nonlinear eigenvalues. The parameters Vn and _ have been determined by numerical

experimentation. Typical values are Vn = 0.25 and V_ = 0.025.

TVD and LED Properties

In one dimension consider the approximation

At _f +1 At A
w_ +1 = wj 2_( j -- fj-1) + _-_x(QJ+l/2 Wj+l/2 - Qj_I/2Awj_I/2)

where Awj+l/2 = wj+l -- wj. Suppose that the Jacobian matrix A = _ is at least locally
constant. Then the scheme is TVD if

Qj+I/2 _- Aj+I/2 • (5)

This result follows directly from the fact that the system can be diagonalized, and wc can

ensure that each characteristic variable satisfies the TVD criterion (i.e., the total variation of

the variable is nonincreasing).



A replacementfor theswitchof Eq.(4) that is TVD for a scalar equation is introduced in

Ref. [20]. In one dimension this switch is given by

IPj+I - 2pj + Pj-ll
vj = IPs+I -Psi + IPS -PS-ll + e" (6)

and choose g(2) = ½. In practice we usually use a weaker form than Eq. (6), for example,

IPs+a - 2PS + PS-xl

uj = (1 -- ¢d)79TV D + Of'P'

where

79TVD = IPS+I --PSI + tPS -- Ps-ll,

79 = PS+I + 2Ps + PS-1,

and 0 < w < 1. The TVD switch of Eq. (6) is recovered when w << 1. Typically w _ 1/2.

In Refs. [6] and [8] Jameson develops a theory for scalar nonoscillatory schemes based on

the local extremum diminishing (LED) principle that maxima do not increase and minima do

not decrease. The LED principle applies to multidimensional problems, and it is equivalent to

the TVD principle in one dimension. If a scheme is LED, then the scheme is positive.

SLIP Scheme

Until now we have considered a combination of a low-order and high-order artificial viscosity

based on a scalar switch. This switch has the disadvantage that it is based on only one quantity,

the pressure. Moreover, it forces all variables to be treated equal, even though some experience

sharp changes through the discontinuity while others are continuous across the shock. One

can instead limit independently each dependent variable in each coordinate direction.

Jameson [5] introduced a new class of limiters and implemented such a limiting process

within a framework that he called the symmetric limited positive (SLIP) scheme. For the SLIP

formulation Jameson constructed a family of limiter functions based on the function

?2--V qn(u, v) = 1 - lul + Ivl +,

where q is a positive number and e has the dimensions of u. Note that R(u, v) _ 0 whenever u

and v have the oppositc sign. Let w be an element of the solution vector for the flow equations.

According to our previous theory [20] R(Awj+3/2, Aws_I/2) , where Aws+3/2 = ws+ 2 -WS+l,

would be replaced by Vj+l/2, where Vs+l/2 is the maximum of vj over the nearest neighbors

and v is given by Eq. (6). Define the limiter function L(u, v) by

u+v

L(u, v) = R(u, v) 2 (7)

At the mesh cell interface j + 1//2, we define the left and right states for each dependent variable
as

1 L
WL = Wj + -_ (Awj+3/2, AWj_I/2) ,

1

W R : WS+ 1 -- -_L(Awj+3/2, AWj-1/2),

(8)

4



andso
WR -- WL =- tWj+l/2 -- L( Awj+3/2, AWj-1/2).

For the artificial viscosity all differences will be based on wR - WL. In the neighborhood of

shock waves R(u, v) and hence L(u, v) axe close to zero. Moreover, wR - WL = AWj+l/2,
resulting in a first-order scheme for the artificial viscosity. For smooth flow R(u, v) '_ 1, and

L(u, v) = (u ÷ v)/2. Hence, in a smooth region

W R -- W L : AWj.+I/2 -- L(Awj+3/2, AWj-1/2)

AWj+3/2 ÷ AWj-1/2

'_ Awj+l/2 - 2

1

- 2 A3Wj+I/2"

(9)

Thus, the SLIP scheme has similar properties to the JST scheme. One can obtain the rela-

tionship between the SLIP and JST schemes by defining the diffusive flux dj+l/2 as

dj+l/2 _- otj+l/2(WR -- WL) (10)

with aj+l/2 = t_(2))_j+l/2. The quantity _(2) is a parameter, and ), is the spectral radius of the
associated flux Jacobian matrix.

One difference between the JST and SLIP schemes involves the parameters n(2) and _(4)

for the second and fourth differences, respectively. Both _(2) and _(4) are free parameters in

the JST scheme. As seen from Eqs. (10) and (9) these parameters are automatically chosen as
1

n(2) and ½_(2) with the SLIP scheme. The coefficient of the second difference is chosen as

so that the scheme is fully upwind for supersonic flows. However, the purpose of the fourth-

difference viscosity is only to accelerate the convergence to a steady state by eliminating the

odd-even point deeoupling. Hence, we wish n(4) to bc as small as possible for accuracy while still

achieving a good convergence rate. It does not seem reasonable to connect the two components

of the artificial viscosity.

One can generalize the SLIP scheme by reintroducing a frec parameter that essentially

governs the level of the third-order viscosity in smooth regions. The resulting scheme has the

disadvantage that a free parameter must be chosen; however, it has the advantages of greater

flexibility and increased accuracy. We replace Eq. (7) by

L(u, v, w) = R(u, w) . [(1- 4_(a))v + 4n(4) _--_-] , (11)

where left and right state values are determined by

1
W L -_ Wj ÷ -_L(Awj+3/2, AWj+I/2, tWj_l/2) ,

1

wR=wj+l - -2L( Awj+a/2, Awj+ l/2, AWj_l/2).

When _(4) = ¼, the L of Eq. (11) reduces to the original L of Eq. (7). Now, at shock waves

R(u, w) is small and we have wR - WL = Awj+l/2. For smooth regions of the flow field we

have wR - WL = -2_ (4) A3wj+I/2.



CUSP/AUSM Scheme

So far we have described the use of an artificial viscosity based on either a scalar or matrix co-

efficient. Liou and coworkers designed a scheme called Advection Upstream Splitting Method

(AUSM) [10, 11, 12]. This method was later refined for large-scale 3-D viscous computations

[15]. AUSM is based on a splitting of the flux function into convective and pressure contribu-

tions. In some sense, the pressure terms contribute to the acoustic waves while the velocity
terms contribute to convective waves. Hence, it is reasonable that these flux terms be treated

differently. Liou thus considers decompositions of the flux vector that are not based on a char-

acteristic decomposition but on Mach number scaled contributions of the left and the right

states to the interface flux. This decomposition has the disadvantage that it is more difficult

to develop for other sets of equations compared with a characteristic decomposition. A similar

type scheme called the convective upwind split pressure (CUSP) scheme was later introduced

by Jameson [5] and subsequently modified by Watsumi, Martinelli, and Jameson [7, 8, 22, 23].

The CUSP scheme has several advantages. First, one can consider the scheme as another type

of artificial viscosity, since it is defined as a sum of the central flux average plus a dissipative

flux. Hence, it can be readily used with a variety of time-stepping schemes (e.g., multistage,

LU, implicit, etc.). Second, the CUSP formulation can be used with multistage schemes which

do not evaluate the artificial dissipation fluxes at every stage, in order to reduce computa-

tional work. Another advantage of the CUSP scheme is that it can be easily combined with
preconditioning, since preconditioning is based on the inviscid flux form and not the artificial

dissipation. Hence, we shall only describe the CUSP version of this type of scheme.

Definition of CUSP Scheme

Previously, we introduced the scalar and matrix-valued viscosities by considering dj+l/2 of the
form

1

dj+l/2 -- -_Qj+l/2(Wj+l - wj).

The factor 1 is introduced so that we get first-order upwinding when Qj+I/2 = I. We note

that for the scheme to be TVD, Q must be sufficiently large (see Eq. (5)). For the matrix

viscosity we chose Q = IAI (modified near zero eigenvalues) while for the scalar viscosity we
chose Q = a(A)I.

For the CUSP scheme we instead choose d as a linear combination of w and f. We shall
only consider the choice for the state vector given by

Wh = (p pu pH) T

(o)f = u pu + p

pH 0

This choice is denoted HCUSP by Jameson [7].
defined as

= UWh + fp.

The first-order accurate CUSP scheme is

1
dj-kl/2 _-- -_vc(wj+ 1 -- wj) "_ -_(fj-bl -- fj). (12)

The factor c is included so that u is dimensionless. We thus consider only scalar parameters

instead of a matrix coefficient, but we have two free parameters, u and _3. The scheme is total
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enthalpypreserving.By usingthearithmetic average,_ = I(Uj+ 1 q-_Zj), and the definition

ac = uc + _9_, (13)

one can rearrange Eq. (12) to obtain

1
d +1/2 =   c(wj+l - +  (fpj+l - fpfl + - =j).

Introducing the Roe matrix [17] ARL, we have that fR -- fL = ARL(Wn -- WL). This relation

is exact if ARL is computed from weighted averages of the left and the right states. Then the

first-order dissipation is

1

dj+l/2 = -_(j3AnL + t_cI)(wR -- WL). (14)

We see from this formula that d is a linear function of A. Recall that IAI is a quadratic function

of A, by the Cayley-Hamilton Theorem. Hence, it is not possible to bound d by IAI. Thus,
the CUSP scheme cannot be TVD.

Assume that the subscript L denotes the interior point inside the shock zone, R is the

state downstream of the shock, and the state LR is subsonic.

downstream point with the state R is in equilibrium if

b'C

fR -- fL + _--_(WR -- WL) = O,

Substituting the Roe matrix for the difference in f into Eq. (15) we get

Jameson [7] shows that the

(15)

vc I_ARL -4- _ ] (wR -- WL) = 0. (16)

Hence, wR -- WL is an eigenvector of ARL, and -(r,c)/(1 +/3) is the corresponding eigenvaluc.

The eigenvalues of ARL are known to be ,k+, ,k- and u. If ,k is an eigenvaluc of A, then using

this formula for vc in Eq. (14) we have

1

dj+l/2 = _ [--,_I -F fl(ARL -- AI)] (WR -- WL).

In order to have a positive diffusion when u > 0, we require that ), be negative (i.e., -(vc)/(l+

_) = _-). Thus,

For u < 0 we obtain similarly

vc = -(1 + fl)A-. (17)

vc=(1 - fl)A+. (18)

So, we have reduced our two free parameters to one free parameter by demanding a one point

shock profile. More generally, Jameson shows that one obtains a shock profile with one interior

point if the following two conditions hold:



I. Whenthe flow is supersonicthroughthe shockthenoneobtainsa totally upwindflux.

II. The artificial dissipationQ satisfies a generalized eigenvalue problem

(ARL -- O_RAQRA) (WR -- WA) = 0

at the exit from the shock.

The second condition is satisfied by both the matrix viscosity and the CUSP scheme; however,

the scalar viscosity does not satisfy the first condition. We again note that the TVD condition

Q > IA] is satisfied by the scalar and matrix viscosities but not by CUSP.

What remains to be done is to choose suitable functions for fl and vc which satisfy the

above requirements. Jameson's choice for fl, which is based upon the eigenvalues corresponding

to the acoustic waves, is given by

)fl= - ma_ _0, "+_+_u---Z_A) if -I<M<0

sgn(M) if [M[ > 1.

(19)

The cutoffs, fl > 0 for u > 0 and fl _< 0 for u < 0, ensure that the pressure terms are discretized

centrally for small Mach numbers. Shock capturing with one interior point is obtained by taking

[uI if fl = 0

-(l+fl)A- if fl>0, 0<M<I
_c= (1-fl)A + if fl<0, -I<M<0

0 if ]M I _> 1.

The dissipation coefficients are to be computed from Roe-averaged quantities. They provide

full upwinding for supersonic flow (fl = sgn(M), u = 0). The choice of vc = ]u I for fl = 0 yields

a continuous dissipation coefficient in the subsonic region, and it does not smear slip lines with

lul close to zero. This makes the CUSP formulation attractive for viscous flow calculations with

boundary layers. However, viscous flows are usually discretized by using cells with large aspect

ratio. It is well known that this situation requires larger dissipation scaling in the direction of

the long cell sides than given by lul. We redefine the dissipation coeËficients in the individual

coordinate directions. For the _-direction we have

I max([uI,rScr- ) if fl=0

-(1 + _)A- if /3 > 0 and
0<M<I

vc_=r + (1-fl)A + if flKOand

-IKM<O

0 if [M[ _> 1.

(20)

where r + and r- are functions of the spectral radii in the _ and _ directions (Af and An) , and

they are defined as follows:

r = (_)¢, r + = max(r, 1), r- = min(r, 1).

The dissipation coeffÉcient in the _/-direction is defined correspondingly.



Simplified Scheme

Several modifications of the CUSP scheme have been in use so fax. Based upon the Wh =

(p pupH) T system the dissipation coefficients presented in Refs. [7] and [23] are as follows:

IMI if [M[ ca = l(e+-M_) if ,M[<e,

{ +max/O,. )uJ=_,l if O_<M<I/3 = -max O,u__+] if -I<M<O

sgn(M) if IM[ _> 1.

(21)

This choice does not allow exact shock capturing because Eqs. (17) and (18) are not satisfied.

Furthermore, Roe averaging has been replaced by arithmetic averaging in Ref. [7] and A-, A+

by u - c, u + c, respectively. This simplification saves a few square roots in the coding of the

dissipative flux. This then becomes

c_

/3

IMI if IMI> c= ½(c+M_) if ]MI<c,

max (0, 2M -1) if 0_<M< 1
min(0,2M+l) if -I<M<0

sgn(M) if IMI _> 1.

(22)

Higher Order Scheme

Having determined vc and/3, we see from Eq. (12) that the scheme is completely defined in

terms of w and f. Recalling from previous sections, we now need to combine a first-order

artificial dissipation with a high-order dissipation. As previously the high-order dissipation is

used in the smooth regions while the low-order artificial viscosity is used in the neighborhood

of shocks. To allow changing from one type to the other we can either use the JST switch of

Eq. (4) or the SLIP scheme. Formula (12), as given, is only first-order accurate, as it depends

only on dj+w2 = Wj+l - wj, and so the complete artificial viscosity behaves like a second
difference. In order to improve this situation we need to use a MUSCL or SLIP approach

to get the first difference to higher order accuracy. Since the fluxes in the CUSP scheme

have different slopes on the two sides of the sonic line, the SLIP construction, which relics

on successive differences, can cause a loss of smoothness at the sonic line. This difficulty can

be avoided by using the MUSCL approach to obtain the states corresponding to higher order

accuracy. To impose monotonicity we can apply the limiter of the SLIP scheme. In particular,

we can replace Eq. (12) by

vc
dj+,/2 = -g(wR - + [f(wR) -

where wR, WL are given by Eq. (8). This procedure was followed throughout the numerical

examples shown below. Application of Eq. (8) to the Wh = (p pu pH) T variables still allows

total enthalpy to be preserved in the higher order scheme.



Analysis of CUSP Scheme

The eigenvalues of/3ARL + veI in Eq. (14) are #1c, #2c, and #3c. Using the simplifications of

Eq. (22) the eigenvalues are:

#1 = IMI,

1

]M[ if IMI <

#2= a+/3 if ½<M<I

]M + 11 if [MI > 1,

IMI if IMI <
#3= a-_ if ½_<M_<I

IM- 11 if IM[ > 1

We note that for IMI < ½ all three eigenvalues of the artificial viscosity are equal, and so we

have the equivalent of a scalar viscosity. The scalar viscosity now scales with IMIc rather than

(IMt + 1)c for the JST scalar viscosity. This is more similar to the case of preconditioning

where all the eigenvalues are approximately IM]c for low speed flow. Hence, wc expect that

the CUSP dissipation should work properly for very low Mach numbers provided the ccntral

flux terms are augmented by a suitable preconditioning matrix.

In the subsonic range where/3 = 0, all of the versions of the CUSP scheme do not satisfy

Eqs. (17) and (18), which are necessary for shock capturing. That is, the cell-face Mach

numbers in the shock structure have to be larger than about 0.5 in order to avoid post-shock

oscillations. The motivation to design vc = lul for/_ = 0 has already been discussed previously

and is not repeated here. However, the choice of the function for f_, as given in Eq. (19), is

not necessarily optimal. For example, /3 = max(O, (u + ½A-)/(u - A-)) would allow shock
capturing for Mach numbers down to about 1/3, but the subsonic dissipation would bc twice

as large, vc = 2lu ] for /3 = 0. Nevertheless, our own experience gained from a number of

numerical applications suggests that there is no need for further modifications of/3.

It is rather difficult to compare the effect of the parameter g(4) of the JST and the combined

CUSP/SLIP schemes since these schemes also include eigenvalue information which is not the

same. To isolate the effect we consider a low Mach number flow with preconditioning (see

Ref. [25] for details). Now both switches axe based on the convective eigenvalue u. A typical

value for the JST scheme is _(4) = _2" However, for a aspect ratio of one the Martinelli scaling

[13] adds another factor of two. The parameter a = 0 in the preconditioning adds an additional

factor of approximately 2.6. Hence, the effective constant multiplying the fourth difference is

5 which is somewhat smaller than the 1 used with the original CUSP scheme with theabout _,

SLIP formulation. For transonic flows it is more difficult to compare the levels of dissipation.

However, it seems that the original SLIP scheme yields too high a viscosity level and so _(4)

should be reduced to less than 1. Numerical computations demonstrate the improved accuracy

(though slower convergence) for standard transonic turbulent flows when _(a) is reduced.

Numerical Results

In this section we assess the accuracy and shock capturing capabilities of the HCUSP scheme.

Comparisons are made between the HCUSP and MATD schemes. The commonly used scalar

dissipation scheme is also included in some of the comparisons. In so doing one can clearly see

10
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M = 0.80, a -- 1.25°).

the superiority of the high-resolution HCUSP and MATD schemes on even relatively coarse

meshes (i.e., 16 cells in the boundary layer of a viscous flow). The flow problems considered

in the evaluation of these numerical diffusion schemes include the following: 1) Inviscid flow

over airfoils, 2) laminar flow over a flat plate, 3) turbulent flow over an airfoil, 4) inviscid

and viscous hypersonic flow over a 2-D wedge. The computational effort and convergence

behavior in computing these solutions is given. In all cases a five-stage Runge-Kutta scheme

in conjunction with the convergence acceleration techniques of local time stepping, implicit

residual smoothing, and multigrid was used.

The first case is similar to the application published in Ref. [7]. Results for inviscid transonic

flow over the NACA 0012 airfoil are shown in Fig. 1. The free-stream Mach number is 0.8 and

the angle of attack is 1.25 °. An O-topology mesh of 160 x 32 cells was used and is partially

depicted in Fig. 1. The shock waves on the upper and lower surfaces are captured with a single

interior point. The differences between the accurate dissipation coefficients of Eqs. (19) and

(20) on the one hand and the simplified coefficients of Eq. (22) on the other arc small. Careful

examination reveals that the exact formulation is somewhat more accurate on the upper surface

where the shock is stronger. These inviscid solutions were obtained with a 4-level multigrid

and sawtooth-type cycle. They converged at a rate of about 0.90 per multigrid cycle.

In Figs. 2 and 3 the HCUSP and MATD schemes are compared for this case. Solutions

were computed on three successively finer C-topology meshes. The coarsest mesh contained

192 × 32 cells, with 160 cells on the airfoil, and for each sequential mesh the number of cells

in each coordinate direction was doubled. The principal differences between the solutions

occur at the shock waves. Since the MATD scheme uses a pressure switch for all the flow

equations, it cannot capture a shock with a single interior point. It requires three interior

points. Nevertheless, the resolution of the stronger upper surface shock is nearly the same
for both the MATD and HCUSP schemes on the 384 x 64 and 768 x 128 meshes. With the

MATD formulation there is some smearing on the 192 x 32 mesh. As clearly evident in Fig. 3

the HCUSP scheme allows a sharp definition of the weak lower surface shock and the Zierep

singularity that immediately follows. The aerodynamic coefficients calculated with the MATD

scheme on the 384 x 64 mesh essentially agree with those for the finest grid. The lift and

drag coefficients determined with the HCUSP scheme on the corresponding meshes arc not the

12
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Figure 2b: Inviscid pressure distributions computed with HCUSP scheme (NACA 0012 airfoil,

M = 0.80, a = 1.25°).

same, with the finest grid values approaching those obtained with thc MATD scheme. These

results probably reflect the higher level of background dissipation with the HCUSP scheme.

As an initial evaluation of the dissipation schemes for viscous flows we consider low-speed

(Moo ---- 0.15) flow over a flat plate at zero incidence. For this flow the Reynolds number per

unit length is 105. The computational domain is a rectangle. With respect to the leading edge

of the plate, the domain extends two plate lengths upstream and one plate length downstream.

The upper boundary is four plate lengths above the plate. Solutions were computed on the

same domain and grids used in Ref. [23]. Starting with the finest mesh, coarser meshes were

determined by successively eliminating every othcr mesh line. The finest grid consists of

512 × 128 cells, with 384 cells on the platc. In the direction y normal to the plate the grid is
J n I/2_

spaced uniformly in the boundary-layer coordinate 77 (_? -- y/nex ), where x is the coordinate

parallel to the surface, and Rex is the Reynolds number based on distance from the leading

edge of the plate). Thus, there is constant resolution of the boundary layer at each location

along the plate. Outside the boundary layer the grid is stretched exponentially. In order to

resolvc the region in the vicinity of the stagnation point, the grid is clustered at the leading

edge of the plate. At the surface of the plate no-slip and adiabatic boundary conditions are

enforced. Along the boundary upstream of the leading edge, a symmetry condition is applied.

Characteristic type boundary conditions are used at the upstream, downstream, and upper

boundaries.

A comparison of the velocity profile at X/L = 0.82 computed with the the scalar, matrix,

and HCUSP dissipation forms is displayed in Fig. 4. Even with just eight points in the boundary

layer (64 × 16 grid) the MATD and HCUSP schemes nearly replicate the Blasius solution. As

demonstrated in Ref. [1] scalar dissipation can produce serious contamination. With the scalar

dissipation, more than 32 points are required in the boundary layer to obtain a grid converged

solution. For the MATD and HCUSP schemes the variation of the errors (relative to the Blasius

solution) in the calculated skin friction, displacement thickness, and momentum thickness are

shown in Figs. 5a and 5b. The standard definitions [18] are used for these boundary-layer

quantities. The errors in all the boundary-layer parameters are quite similar for the high-

resolution schemes. This is not surprising since both schemes have a scaling factor that vanishes

13
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asthesurfaceisapproached.
Wenextconsidertransonicflowoverthe RAE 2822airfoil. Thefree-streamMachnumber

is 0.73,the angleof attack is 2.79°, and the Reynoldsnumberbasedon the airfoil chordis
6.5 X 10 6. Transition from laminar to turbulent flow is fixed at the 3% chord location. The

C-type grids used are as follows: (1) 160 x 32 with 128 cells on the airfoil, (2) 320 x 64 with

256 cells on the airfoil, and (3) 640 x 128 with 512 cells on the airfoil. The outer boundary is

located 20 chords from the airfoil. The normal spacing at the surface of the 640 x 128 mesh is

7.5 x 10 -6 chords. At the leading and trailing edges of the airfoil the mesh is clustered, giving

tangential spacings of 1.17 x 10 -3 and 1.86 x 10 -3 chords, respectively. These spacings are

roughly doubled with each mesh coarsening. To determine the effect of further mesh refinement

a calculation was performed with the MATD scheme on a 1280 x 256 grid.

In Figs. 6-8 the pressure (Cp) and surface skin-friction (CI) distributions computed with

thc different dissipation schemes for the range of meshes described are shown, along with the

experimental data [2]. As in the inviscid cases the primary differences in the solutions occur

at the shock wave. On the coarsest grid (160 x 32) both the SCALAR and HCUSP schemes

produce a solution with the shock too far upstream. This is an unexpected result for the

HCUSP scheme. The acceleration of the flow upstream of the shock is underpredicted relative

to the finest grid. In Ref. [21] the adverse effect of a smooth limiter on the accuracy of the

solution in the vicinity of flow transition, and thus on the acceleration of the flow upstream

of the shock, is demonstrated. Therefore, such a result with the HCUSP scheme could be

a consequence of the smooth limiter being used. With both the SCALAR and the MATD

schemes a nonphysical increase in the skin-friction solution on the upper surface appears at

the trailing edge of the airfoil. This behavior does not occur in the solution obtained with the

HCUSP scheme. The computed aerodynamic coefficients, including the pressure and friction

contributions to the total drag, are given in Table 1. On each mesh the lift and drag coefficients

corresponding to the solution obtained with the MATD scheme exhibit the closest agreement

with the 1280 x 256 grid values. There are only small discrepancies in the coefficicnts associated

with the MATD and HCUSP schemcs on the 640 x 128 grid.

Convergence behavior for the HCUSP and MATE) schemes is displayed in Fig. 9. Five levels

of multigrid were used for this case and either 50 or 70 cycles wcrc executed on two coarser

meshes in order to obtain an initial solution. On the 320 x 64 grid the average rate of reduction

of the residual for both schemes is about 0.92. Figure 9 also shows the effect of the modification

given by Eq. (20) to vc in the HCUSP scheme. The convergence is improved by using the 2-D

formulation for the dissipation coefficient vc. Note that convergence with _ = 0 was possible

for this transonic case but not for the hypersonic case presented below.

Thc fourth case is hypersonic 2-D flow over a blunt wedge. Figure 10 displays the solutions

obtained for viscous and inviscid flow using identical meshes of 64 x 48 cells. Physical diffusion is

so large that the shock profile is significantly smeared in the viscous result. For inviscid flow, on

the other hand, we obtain perfect capturing with a single interior point in the shock structure by

using the formulation of Eqs. (19) and (20). Detailed comparisons of the hypersonic wedge flow

solutions yielded by the CUSP scheme and AUSM have been presented in Ref. [14]. The shock

capturing capabilities of both schemes are essentially equal. A comparison of shock profiles

for thc exact and the simplified coefficients is given in Fig. 11. We have choscn the first-order

scheme in order to address the pure shock capturing capability of the CUSP scheme without

interference from the limiter. The simplified dissipation coefficients of Eq. (22) producc strong

oscillations at the shock, even though there is substantial physical diffusion present. Hence it is

concluded that an accurate implementation of dissipation coefficients is a must for hypersonic

flows with strong shocks.
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Comparisonsof computationtimesindicatethat the CUSP scheme needs about 40% more

computer time than the basic scalar dissipation. The MATD scheme only requires about

15% additional time. MATD requires less CPU time primarily because it needs only a single

evaluation of the limiter function. Due to lower inherent dissipation, computations with the

CUSP formulation converge somewhat slower for transonic flows than those with simple scalar

dissipation. The major advantage of the CUSP approach is that it is more accurate and

more robust than scalar viscosity. Our numerical tests indicate that the accuracy of the

CUSP scheme is intermediate between scalar and matrix dissipation for transonic flows. For

hypersonic flows it seems to be more robust than the matrix viscosity even though it is not
TVD.

Since the CUSP scheme is implemented through artificial dissipative terms, it does not

have to be applied at each stage of the Runge-Kutta method. In particular, the diffusive fluxes

can be evaluated only at the first, third, and fifth stages of a five-stage method, just as is

typically done for the scalar numerical dissipation.

Concluding Remarks

The CUSP scheme has been studied and analyzed. A detail comparison has been made between

the CUSP, MATD, and scalar dissipation schemes. For transonic inviscid flows the CUSP

scheme allows better resolution of shock waves, since they are captured with one interior

point. However, the aerodynamic quantities such as lift and drag obtained with the CUSP

scheme are not as accurate on coarser meshes (i.e., 320 × 64 cells or less) as those calculated

with the MATD scheme. Both the CUSP and MATD formulations give high accuracy in

the computation of high Re number flat-plate flow. For transonic viscous flows and coarser

meshes the accuracy in aerodynamic coefficients is better with the MATD scheme than with

the CUSP scheme. This loss in accuracy with the CUSP scheme on coarser grids appears to be

a consequence of limiter activation (i.e., reduction to first order). Convergence of the HCUSP

scheme has been improved by introducing the aspect-ratio scaling factor of Eq. (20).

With our present choice of HCUSP dissipation coefficients it has been shown that the

resolution of strong shock waves occurring in hypersonic flows is possible whereas the simplified

coefficients that were published previously failed.

The CUSP scheme requires roughly 40% more computer time than the scalar scheme, while

the MATD scheme needs about 15% more time. Using only pressure in the switches for MATD

rather than using a different measure for each equation reduces the robustness of the algorithm

but requires less computer time. Convergence behavior with the CUSP and MATD schemes

is similar. For hypersonic flows the CUSP scheme seems to be more robust than the MATD
scheme.
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Dissipation
Scheme

SCALAR

MATD

HCUSP

Grid

160 x 32

320 x 64

640 x 128

160 x 32

320 x 64

640 x 128

1280 x 256

160 x 32

320 x 64

640 x 128

eL

0.8172

0.8331

0.8532

0.8304

0.8538

0.8597

0.8611

0.7987

0.8493

0.8592

CD

0.01728

0.01743

0.01782

0.01818

O.O1808

O.O1799

0.01800

0.01926

0.01831

0.01803

CDp

0.01275

0.01194

0.01225

0.01251

0.01250

0.01246

0.01246

0.01367

0.01263

0.01245

CDI

0.004532

0.005487

0.005574

0.005662

0.005571

0.005535

0.005544

0.005594

0.005679

0.005585

Table 1: Lift and drag coefficients for turbulent flow over RAE 2822 airfoil (RAE 2822, Moo = 0.73,

a = 2.79°,Rec ----6.5 x 106).
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